

2016

[VERTEX VS PIXEL SHADING COMPARISON]
When a per vertex shaded mesh, has advantages over a per pixel shaded mesh
in a WebGL application?
Martin Niehoff (326516), 17.04.2016
For the Game Creation and Producing at the Saxion University of Applied Science

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Vertex Vs Pixel Shading Comparison

When a per vertex shaded mesh, has

advantages over a per pixel shaded mesh

in a WebGL application?

Written by

Martin Niehoff (326516)

info@martin-niehoff.de

As specialization topic in the Game Creation and Producing Course at the

Saxion University of Applied Science

Supervising Teachers

Lukas Malec & Taco van Loon

17.04.2016

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Summary
Web based applications are a rapidly growing market in the gaming and interactive media industry in

general, since the establishment of WebGL as standard. However, as these applications should run

smoothly across as many devices as possible, it's particular important to optimize them. As this

optimization can greatly influence the success of an application, it’s interesting to see,

When a per vertex shaded mesh, has advantages over a per pixel shaded mesh

in a WebGL application?

Therefore, this paper is examining the differences between per vertex and per pixel based shading,

to find the limitations and possible use cases of both technologies by the use of a practically oriented

prototype, build in the Playcanvas WebGL engine. Furthermore, this paper evaluates the influence

that asset sizes have on the web, to underlie the impact of their optimization, as well as the usability

of both techniques regarding their creation expenses.

The gathered data shows that per vertex shaded meshes are generally taking up less VRAM, while

remaining smaller than their pixel shaded fellows, as long as their vertex count stays identical. This

arises from the fact, that vertex color is requiring less data per vertex, than the texture coordinates

of a pixel shaded mesh. However, if additional vertices are required to accomplish the desired color

detail, the advantage of the smaller asset sizes shifts to the per pixel shaded mesh. As a pixel of a

texture is requiring just a fraction of the data, that a vertex with color information is requiring.

Nevertheless, remains the advantage of the low VRAM consummation of per vertex shaded meshes,

even if their file sizes are bigger.

Therefore, per vertex shaded meshes should be preferred in situations, where it’s possible to achieve

the desired color detail without the addition of too many additional vertices, or if low VRAM usage is

an important factor. In addition, the build of the prototype showed, that the creation of meshes with

vertex color have some advantages in a production environment, as the lack of need to unwrap

meshes. Although, its usability stays a case to case decision, based on the used art style and personal

preference due to its own limitations and advantages.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Preface
First off I want to thank my colleagues at C4real, for the experience, which I gained there during my

internship. As I probably wouldn’t be that interested in web based applications like I am at the

moment without them. Furthermore, I want to thank the great team behind the Playcanvas engine,

as they are building a great tool, without that I probably couldn’t make the prototype for this paper

in the extend it is now. Of course not to forget, my teachers who guided me throughput the creation

of this report with some useful input.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Table of Content
Introduction 1

Reason 2

Preliminary Problem statement 2

Theoretical framework 3

Definitions 3

Technique Comparison 4

Background Information 6

Definition of the problem 11

Main Question 11

Sub Questions 11

Scope 12

Research and design 12

List of test cases: 13

Research results 14

What is the importance of file sizes for web based applications? 14

Are there differences between, different mesh file types? 15

Can different Vertex Colors influence the file size of the mesh? 16

Prototype Results 17

Usability 19

Conclusion and discussion 20

Recommendations 21

Graduation Products 22

References 22

Appendices 24

Calculation of Playcanvas Model Sizes 24

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 1

Introduction
With the current trend to allow users to watch, play or interact with media content directly within

their browsers, WebGL is a rapidly growing technology in the gaming and interactive media industry

in general, as its not requiring any additional plug-in, as it was required in the past (Unity

Technologies, 2015).

Content that is accessible in the browser is a giant target market, as not everybody has the

knowledge, or the rights to install additional drivers, or software on their devices. But nowadays

every device, no matter if it's a powerful desktop pc, or a Smartphone has an integrated browser.

And most of these devices are supporting WebGL already out of the box (Deveria, 2016).

In the past users had to install Adobe Flash, to watch videos, or play simple flash games in their

browser. The same was the case for game engines like Unity, which required a custom plug-in to run.

By now this isn't really necessary anymore, as native support for HTML5 and WebGL is replacing

these third party plug-ins. Nevertheless, what has not changed is the requirement to optimize

applications, which should run smoothly on a variety of target devices and platforms.

With these requirements in mind, this report is going to compare two texturing techniques with each

other, to find out in which use-cases one technique could be preferred over the other. More

specifically, this report is comparing per vertex vs. pixel shaded meshes for the use in an WebGL

application.

As usual, there is no perfect, or the only way to solve a problem, but this report is trying to compare

both techniques based on their asset sizes, VRAM consummation and creation expenses in a variety

of different use-cases, to find a nice usability guideline.

When a per vertex shaded mesh, has advantages over a per pixel shaded mesh in

a WebGL application?

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 2

Reason
I was doing the internship for my study in the interactive department of visual 3D Design company

and worked on a few web based projects during that time. One thing, that I noticed while developing

these interactive applications in WebGL, were the different requirements between native

applications and those who run in your browser.

As WebGL isn't reaching the same performance as native applications yet (Unity Technologies, 2014),

it requires some additional optimization for developers. Further optimization is required if the

applications should run smoothly across all devices, due to the compared to a pc, low performance of

current Smartphone's.

But the run time-performance isn't the only thing, that is important for the development of WebGL

applications. Due to the fact that a WebGL application is, like its name already suggests running in

the web, it usually has to be downloaded by the user. Today's PCs usually have at least hundreds of

GB´s, or even a few terabyte of space on their drives. That’s why nobody really complains, if they

have to download 50gb of data once, before they can play a game. Certainly this is a different story,

if users are in their browser, or even on their mobile phones.

In this case applications have to start quickly, like the websites the users are used to. Because users

expect to get quick, if not even instant feedback and appearing content, if they type an URL into their

browsers. Studies have shown, that websites which take more than one second to load are

negatively affecting the user experience (Google, 2015). Although it’s not always possible to keep

applications, as small as normal websites, it’s admittedly more important for the development of a

Web based application to think twice about the used asset sizes.

With these requirements in mind, I was interested, if I could somehow optimize my assets further,

then just packing their textures together as I was used to. After I read some stuff about per vertex

shading, I was interested, if this technique could be a useful alternative for some WebGL projects.

That’s why I want to compare per vertex vs. pixel shaded meshes for the use in an WebGL application

in this report.

Preliminary Problem statement
Therefore the following preliminary problem statement was built:

When has a per vertex shaded mesh advantages over a per pixel shaded mesh,

or vise versa?

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 3

Theoretical framework
The theoretical framework is used to build a foundation for the further research done throughout

this report.

Definitions
Before getting started, lets clarify some definitions, which are going to be used in this paper, to avoid

misinterpretation.

What means per vertex shading?

Per vertex shading refers to the method of texturing a model, via color information, which are stored

in the vertices of the mesh.

This means that the RGB, or RGBA values, are stored like the UV-coordinates, or normal's in a per-

vertex basis, so that the color information is independent of any texture coordinates, or texture map.

But this also means, that a model can only have exactly one color for each vertex.

Although some model formats and engines support to store multiple colors, by adding extra vertices,

which are only used to store the additional color information.

(For further details have a look at the Technique Comparison “Vertex Color”)

What means per pixel shading?

Per pixel shading refers to a texturing method, were the color information for the mesh are stored in

a separate image file (texture).

This means that the RGB, or RGBA values, are stored in a separate image file, which is wrapped onto

the model by the shader, based on texture coordinates (UVs), that are stored on a per vertex basis in

the mesh (Polycount, Texture Coordinates - polycount, 2016).

WebGL

WebGL (Web Graphics Library) is a cross-platform, royalty-free JavaScript based API for rendering

interactive 2D and 3D content native within any compatible browser. It allows browsers to display

interactive applications with physics, image processing and effects in a canvas element as part of a

web page. WebGL is based on OpenGL ES 2.0 and uses GLSL as shading language.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 4

Technique Comparison
After the basic term definitions are clarified, it’s time to compare both techniques, "per vertex

shading & per pixel shading" a bit more in depth. As it's necessary to know the requirements and

limits of both techniques, to be able to find the most ideal and non-ideal use-case for both.

Admittedly, it will also help to know the typical usage of both techniques in the industry, to find

these ideal use-cases.

Vertex Color

Usage

Vertex color can be used to color a mesh without any UVs, or as additional input for a shader. For

example, to colorize, or darken the diffuse map of a mesh, or as color mask to blend multiple tiled

diffuse maps onto a mesh. Some nice examples are foliage lighting (Polycount, Foliage Vertex Color -

polycount, 2015), texture mapping (Polycount, MultiTexture - polycount, 2016) and procedural

animations (Sousa, 2007).

Image by Eric Chadwick

Limits

Generally, Vertex color is quite cheap to render and does not require much extra storage render.

Depending on the used game engine and model format it's possible to store multiple color values on

one vertex, although this will cause the game engine to render this vertex twice and slightly

increasing the memory cost (Polycount, MultiTexture - polycount, 2016).

Pros

 Vertex color does not require any UVs on the mesh

 Works well on meshes with tiled textures (Useful to add effects like Ambient Occlusion to

models (Polycount, Ambient occlusion vertex color - polycount, 2015))

 Does not have any texture compression artifacts (Trümpler, X:Rebirth – Geometric Lensflares

| Simon Schreibt, 2015)

Cons

 Depended on the amount of Vertices on the mesh

 Each Vertex requires more data, than a pixel of an uncompressed texture

http://wiki.polycount.com/wiki/Foliage_Vertex_Color
http://wiki.polycount.com/wiki/MultiTexture
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch16.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch16.html
http://ericchadwick.com/

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 5

Pixel Color

Usage

Per Pixel based color information is commonly used to control a wide variety of different parts of a

shader, or to supply diffuse, normal or specular color information to the shader. As pixel based color

data is stored as a two dimensional image, a model with texture coordinates is required for the

shader, to be able to wrap the texture onto the model.

Although the creation of the texture coordinates (UVs) for a mesh is an extra step, which is required

before artists can start to texture a model, this is the most used technique, to texture models for

games. Reasons for that are, that the texturing and modeling process can be easily separated and it’s

possible to increase the resolution of a texture without modifying the mesh itself.

Some standard techniques for creating this textures are to draw them in a separate texturing

application like Photoshop, or Substance Painter, or to bake information from a mesh onto a texture

(Polycount, Category:TextureTechnique - polycount, 2014)

Image by Martin Niehoff

Limits

Pixel based color allows a high flexibility to change parts of the texture, or to increase its resolution,

without the need to adjust anything on the mesh itself.

Pros

 Mesh independent

 Allows multiple color information per vertex and model

 A pixel of a texture requires less data, than a vertex of a mesh

Cons

 Requires UV´s on the mesh

 Requires extra space for the textures

http://martin-niehoff.de/

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 6

Background Information
At this point the basic definitions and used techniques should be clear to everyone, but to actually

compare both techniques, its needed to gather some more background information as evidence for

the importance of certain aspects. For example, why it’s so important to lower the asset size for web

based applications, or on which devise WebGL is actually running.

What are the requirements of WebGL?

The only thing that is required to run a WebGL based application is a browser with WebGL support

and as all Major browser vendors are members of the WebGL Working Group, its widely supported

(Khronos Group, 2011). At this date around 83.86% percentage of all browsers are supporting WebGL

based on data from “StatCounter GlobalStats” for March 2016 (Deveria, 2016).

Although this value is depending on the browser usage per country, for example is the support in

Germany with 88.17% better than in China with 71.57% (Deveria, 2016).

Are there different requirements between the two shading methods in WebGL?

As this report is comparing two different shading methods, its rational to check the availability and

support of both, before starting with their implementation. Luckily WebGL is using the OpenGL

shading language and offers therefore the familiarity of the standard OpenGL API, so that

implementation of both techniques is similar to the implementation in native OpenGL applications

(Khronos Group, 2011).

Admittedly is the list of available GLSL commands quite short compared to

modern OpenGL applications, due to the old standard used. OpenGL ES 2.0

is built to run on as many devices as possible, so it’s only requiring GLSL

Version 1.0 (Khronos Group, 2014) instead of the current version 4.5 (Wikipedia, 2015).

As the goal of this report is not to figure out how to program shaders for these techniques in WebGL,

but rather a general comparison of their usability. A WebGL engine called “Playcanvas” with pre-

integrated shaders for both shading techniques is used as reference engine throughout this paper.

https://playcanvas.com/

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 7

What is the average size of a website in 2015?

Too measure the importance of the asset size for Web based applications, some kind of reference is

needed. A good value for that is the size of an average website nowadays, as these applications will

be accessed by users in the same way, as normal websites.

A good source for this data is the “HTTP Archive Report”, which collects technical information from

half a million of the most popular websites (Souders, 2016). The report analyzes web pages, that are

publicly available and stores technical information about them.

It shows that the average web page was around 2.2mb big in 2015, this is an increase of 16%

compared to 2014.

3% 3%

16%

64%

2%

12%

AVERAGE FILE SIZES IN KB

1. HTML 2. CSS 3. Javascript 4. Images 5. Flash 6. Other

http://httparchive.org/

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 8

What is the average bandwidth of users?

After knowing the average size of websites, it’s time to get the average bandwidth of the users, so

that their average loading times can be roughly estimated. Although this could be taken into a

separate research topic on its own, due to the many factors influencing the actual end user

connection. It’s enough evidence for this topic to have a rough value for a basic comparison, as the

real value will differ based on the geographic and demographic target group, which is out of the

scope of this paper.

For this purpose, the “State of the internet report Q4 2015” (Akamai Technologies, 2016) from the

Akamai network will be used. Akamai is the global leader in Content Delivery Network (CDN) services

with more than more than 2 trillion Internet interactions each day (Akamai Technologies, 2016).

Although their data should not be taken as a reflection of the actual end-user connection speeds, but
more as an indication of the performance of their CDN and their connected ISPs. It is providing an
interesting view on the general Internet speed and this is enough information for this paper.

The statistics show that the country with the highest average internet connection speed during the

fourth quarter of 2015, was South Korea with an averaged a connection speed of 26.7 Mbps, while

the global average connection speed was just 5.6 Mbps.

26
,7

5,
6

19
,1

18
,8

17
,4

17 16
,8

16
,7

16
,7

16
,6

16
,1

T O P 1 0 C O U N T R I E S G L O B A L A V E R A G E

AKAMAI Q4 2015 RANKINGS

South Korea Sweden Norway Japan Netherlands

Hong Kong Latvia Switzerland Finland Denmark

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 9

What is the difference between mobile and static internet bandwidth?

As WebGL applications are generally build to run on as many devices as possible and also on as many

locations, the overall bandwidth is not the only thing to keep in mind while developing these

applications.

If a user is visiting an application from his or her mobile phone, the chances are high, that they are

doing this through their mobile connection. So it’s an interesting question what bandwidth

differences are there between users, which are browsing through their mobile connection, or via a

static connection.

For this let’s take a look at a study from “OpenSignal” a leading wireless network tracking service.

OpenSignal is determining data speeds and accessibility via an app, with currently over 15 million

downloads (OpenSignal, 2016), so more than enough data as baseline.

One of their recent studies about the state of LTE from March 2015 (OpenSignal, 2016) taken from

11 million users with an LTE plan offers a valid answer to this question. It shows that Europe is the

world’s quickest LTE region with an average of 18 Mbps, while the U.S. have just an average

download speed of 7 Mbps. The global average is in-between on 9.3 Mbps. In addition to that, the

report also offers a nice insight about the average download speeds of other mobile connections,

which offers some valuable data to compare the impact of different connection types on the

download time of an application.

4,4

0,3

1,5

2,5

9,3

0

1

2

3

4

5

6

7

8

9

10

Download speed in Mbps

Speed of Mobile Connection Types

Wifi 2G 3G 3G HSPA+ 4G LTE

http://opensignal.com/

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 10

What is the maximum average time, that a website should take to load?

After defining some baseline values for the average download speeds of static and mobile internet

connections, it’s easy to calculate the time that users have to wait for the download of their WebGL

applications. But the question is, what download times are accepted by users?

As WebGL applications itself are a relatively new trend on the internet, there are hardly any statistics

about that. In addition to this, the “accepted” time which are users willing to wait for something, is

based on their own mindset and that is hard to measure. Although a user is most likely willing to wait

longer, if they know they are loading some fancy 3D application, or a game instead of their local

newspapers webpage. WebGL applications have many familiarities with normal websites, like their

access, that happens in the same way through the browser of the user. This allows a comparison

based on the average accepted loading time for websites, as plenty of statistics are available for this.

A recent speed experiment run at the financial times website shows nicely how the speed of a

website can affect the user engagement. They tested how the speed of their website is influencing

the amount of articles, which is read by their users and by that its impact on their revenue.

“The speed of the site negatively impacts a user’s session depth, no matter how small the delay.”

(Lahav, 2016)

“The data suggests, both in terms of user experience and financial impact, that there are clear and

highly valued benefits in making the site even faster.”

 (Lahav, 2016)

Image from Shaun Anderson

http://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 11

What costs is this traffic producing?

Another aspect to measure the accepted size for web based applications, are the costs that their

download produces on an average user’s data plan, if its downloaded via a mobile connection.

Though these data plans are highly dependent on the user’s country and provider, as well as

underlying frequent changes, this paper is not going through any statistics to avoid blowing up the

scope of this research.

Instead a fictive user from the Netherlands with a data plan, which charges 12 cents per MB (Maemo,

2016), if he or she out of their inclusive volume is going to be used. As the actual prices are not for

any relevance for the conclusion of this report, they are merely to delineate their influence in the

user’s acceptance of application sizes.

Definition of the problem
The gathered data shows the importance of asset optimization regarding their file sizes, for the use

in web based applications, especially if the application should be widely accessible by mobile users

and from areas with low download speeds. Based on this foundation, this paper is comparing the

differences between per vertex and per pixel shaded meshes to find out, if one of these techniques

can be used to lower the file size of certain assets for the use in web based applications.

Main Question
Therefore, the following main question can be formed:

When a per vertex shaded mesh, has advantages over a per pixel shaded mesh

in a WebGL application?

Sub Questions
To be able to answer the main question of this paper, while staying in the scope of this report, two

things have to be clarified upfront.

 When are per vertex shaded meshes resulting in smaller asset sizes?

 When have per vertex shaded meshes a lower VRAM consummation?

With answers to both sub questions it’s possible to conclude which technique can be preferred on a

given use case. Although as the previous research showed, that both techniques have their own

limitations and ideal use cases, this paper is not going to give a fixed rule, but rather recommend

certain use cases in which one technique should be preferred over the over.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 12

Scope
The scope of this report is bound to the research, that is required to recommend one of the listed

shading techniques, for certain use cases, or project requirements.

Factors which are influencing this recommendation are the technical limitations and advantages of

both techniques, as well as their usability for the artist. In addition to that the importance of file sizes

and its impact on the user experience is briefly investigated, to emphasize the importance of file size

optimization for web based applications.

Points that are out of the scope of this report, but could have influenced the recommendation of this

report are performance comparisons of both techniques, on different hardware setups, as well as

different shader implementations and asset creation workflows with addition software, or different

asset pipelines. As well as a more in depth look at a certain target user group, or location, to gather

more in depth statistics about the download speed influences.

Research and design
The main research method, which is used to gather the data required for the recommendation of this

paper is a praxis oriented prototype. This prototype is built to answer the questions, which raised

while collecting the background information needed for this research.

While the collection of these background information helped to figure out the more and less

important aspects of the compared shading techniques, they give no clear answer to the main

question. Therefore, the prototype is used to verify the collected theoretical data and also to give a

more in depth answer to the given main question. In addition to that the prototype is offering a good

possibility to re-check, or extent this research topic, due to its open nature on the web.

The prototype contains only a basic scene with an environment map and light setup to avoid, that

the research results are influenced by any unneeded influences. Meshes with a variety of different

polygon counts and texture resolutions will be spawned separately, to measure the differences in

their asset sizes and VRAM consummations. These information is used to define the asset size and

VRAM usage of both shading techniques, which allows to draw a line between both. This allows

therefore to define a point, where one technique could be preferred, to reduce the download size, or

VRAM consume of an asset.

A positive side effect of building the prototype is that the creation of required assets allows a basic

comparison of their usability in a production environment. As its generally not feasible to use a

technique, even if it offers slightly better results, if it’s too hard to use, or too time consuming.

Therefore, this is another important aspect, that should be taken into account for a

recommendation.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 13

List of test cases:
For the comparison of the asset sizes and VRAM usage, a low poly styled model of a sun is used, as

this style can be easily achieved with both techniques, while being quickly adjustable to every use

case. This ensures, that the focus of this research if on the user shading techniques, rather than the

used art style.

1. Case: Low Poly Vertex Shaded Mesh vs. Low Poly Pixel Shaded Mesh

In the first test case a mesh with a low polygon count is used for both techniques. The only difference

is, that the vertex shaded mesh has vertex color information, but no texture coordinates, while the

pixel shaded meshes has texture coordinates but no vertex color information assigned.

This is used as first comparison to figure out the influence, that the color and UVs information have

on the file size of the assets.

Both meshes contain the same color information. The vertex color is assigned in Maya, while the pixel

color is baked into a texture from the exact same vertex color.

2. Case: Mid Poly Vertex Shaded Mesh vs. Low Poly Pixel Shaded Mesh

The second test case is using the same low poly pixel shaded mesh as in the first test. However, it has

a more detailed texture applied, which is baked from a vertex shaded mesh with an increased

amount of detail. To be able to achieve this amount of on the vertex shaded mesh, it is twice linear

subdivided in Maya.

The purpose of this test is to show the influence of the textures detail on the usability of vertex color.

3. Case: Optimized Vertex Mesh vs. Low Poly Pixel Shaded Mesh

The third and last case shows how vertex shaded meshes can be optimized with adding additional

geometry only on required spots, to increase its usability. As subdivided meshes, like the ones used

in the second test have most likely always more polygons, than most use cases require.

The manually created per vertex shaded mesh of this test case only contains the required polygon

count to visualize the given color information. So that a mesh with a reduced polygon count can be

compared with the low poly pixel shaded mesh from the first test case, which has the same amount

of details stored in the texture.

This test is used to check the maximal possible data reduction with both techniques.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 14

Research results

What is the importance of file sizes for web based applications?
In the theoretical background of this report, a variety of different statistics about average download

speeds on static and mobile internet connections were gathered, to investigate the importance of

asset sizes for web based applications. The gathered data underlay's the importance of file size

optimizations for web based applications, to avoid negative influences on the user experience and

engagement.

The statistics are showing that slower loading times of websites are negatively influencing the user

experience and engagement. "Largely, the slower the site, the greater the effect." (Lahav, 2016)

It shows that an average website of 2.2MB would require around 0.13 seconds for the data transfer

with an average connection speed of 17 Mbps in the Netherlands. A very good result, thinking about

1 second as optimal loading time.

However, the global average download speed is only 5.6Mbps, so the same content would require

already three times more time to load. Or even longer in a different part of the world. Nevertheless,

is the loading times in both cases relatively short, but web based applications will most of the times

be way bigger than an average website. If the user browses to a web based applications with a size of

120MB, like Googles Lightsaber Demo (Google, 2016), for example. The user is accessing a web based

application like this in the same way, as a normal website, however the page loading suddenly needs

7seconds on the same connection.

If an application should be usable on mobile connections as well, this trend will continue rapidly. In

this case the download speed is not the only aspect to think about, but also the price its traffic could

produce. Assuming a user from the Netherlands is visiting an average website of 2.2MB via his

mobile phone. At the average connection speed of LTE in the Netherlands the app still required only

around 0.13seconds for the data transfer, but in addition to that they also have to pay for the

produced traffic. Thinking about a price of 12cent per MB, they would have a bill of 26cents.

But if the user browses to the Lightsaber demo from his mobile the page loading would suddenly

need 8,5seconds and produce a bill over 14,40€.

Furthermore, the download speeds over LTE and their accessibility in the Netherlands are within the

top 10 worldwide. Assuming the fictive user is visiting from a country with exactly the average

download speed, these times will already increase to 0.24seconds for a normal website and more

than 12,9seconds for the WebGL application. Going further and assuming the user is just connected

with a 3G HSPA+ connection instead of 4G, that has an average download speed of 2.5Mbps

(OpenSignal, 2016) the user has to wait for 0,88seconds respective 48seconds for the WebGL demo.

Even on an average Wi-Fi connection with 4.4Mbps download speed Googles Lightsaber demo would

take already more than 27seconds to load. In all cases the WebGL application will load longer than

the time, which is accepted by a lot of users and therefore resulting into the loss of some users. This

shows the importance of file size optimizations for web based applications.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 15

Are there differences between, different mesh file types?
The creation of the assets showed a few interesting aspects of the used file types. The mesh itself is

identically for both shading techniques in the first test case. However, its saved once without vertex

color and once without UV information for the different shading techniques.

FBX (FBX 2013 in Binary Mode)

This showed a relatively big difference in the file size of the generated FBX files. As the Pixel Shaded

Test Mesh with UVs is 47,4KB big, while the same mesh with additional Vertex Color, but without the

UVs is only 34,5KB big. That's a file reduction of 27percent, just by removing the UVs. To cross check

that the same mesh without UVs and Vertex Color is only 29,7KB big.

This shows that the extra vertex color information in this case, is increasing the file size of the mesh

by around 16percent. As different colors will result into different stored numbers, this value can

slightly change depending on the stored colors. (See “Can different Vertex Colors influence the file

size of the mesh?” For further details)

In comparison the file size of the same mesh is blown up by almost 60percent by its UV coordinates.

This illustrates that it's possible to reduce the file size of meshes by great numbers, while using

vertex color instead of per pixel color. As a per pixel shaded mesh would require not just the UVs, but

also an additional texture file.

 Playcanvas JSON

The for this prototype used game engine is using its own file format, based on the JSON file format

(Playcanvas, 2016). As all uploaded FBX files have to be converted into this format, to be readable by

the browser, it’s interesting how this file type is affecting our file sizes.

The converted meshes are increasing in their overall size, due to the textual format, but the size

differences stay in the same order. The Mesh with UVs has still the biggest file with 73,2KB followed

closely by the Vertex Colored Mesh with 69,7KB, while the mesh without any additional information

is only 56KB big. Although the margin between the mesh with vertex color and the mesh with the

UVs is smaller in this format, the vertex colored mesh is still around 4,8% smaller.

29,7 56

34,5
69,7

47,4 73,2

F B X P L A Y C A N V A S J S O N

MESH FILE SIZES IN KB - CASE 1

Empty Mesh Vertex Color With Uvs

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 16

Can different Vertex Colors influence the file size of the mesh?
As the color information, which is stored in the vertices, is like the color information stored in

textures also just a number, it was interesting to see, how different color values can influence the file

size of a mesh.

To check this, the per vertex colored mesh of the first test case was taken again and slightly modified,

to test different color setups.

1. Just one Black Color Applied

2. Multiple Different Colors Applied

3. Smoothed Colors of the second test to produce gradients

Image showing the compared meshes

The results are showing clearly, that the amount of color information is directly influencing the size

of a mesh with vertex colors applied. This means, that a vertex shaded mesh with a single color will

be smaller than a mesh with multiple applied colors.

31
,7

65
,6

32
,9

67
,6

35
,5

69
,5

F B X S I Z E I N K B J S O N S I Z E I N K B

IMPACT OF COLOR AMOUNT REGARDING
THE MESH SIZE

Black Colors Gradients

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 17

Prototype Results
After the examination of the file types already showed some useful information about the different

file sizes, between both shading techniques, the next step is going a bit further with a comparison

under different circumstances, as well as the impact of the textures applied to a pixel shaded mesh.

The comparison of the different test cases with the prototype has shown the following data.

1. Case: Low Poly Vertex Shaded Mesh vs. Low Poly Pixel Shaded Mesh

The first test case shows clearly that per vertex shaded meshes can result in way smaller file sizes

under the given circumstances. Even if the texture would be downscaled and used in a lower

resolution, the overall asset size of the per pixel shaded mesh, will always result in a bigger asset size.

As the pixel shaded mesh itself is already bigger, than its vertex shaded counterpart.

Another interesting fact that the prototype has shown is

the difference in the used VRAM, between both shading

techniques.

While the entire scene with the vertex shaded mesh only

required 1.19MB of VRAM, the same scene with the pixel

shaded mesh already required 23.6MB of VRAM. This can

be useful for optimizing applications to run on mobile

devices with low VRAM capabilities.

69
,6

6

73
,2

3

0

13
0,

89

69
,6

6

20
4,

12
V E R T E X S H A D E D M E S H P I X E L S H A D E D M E S H

FILE SIZES - CASE 1

Model Size (in KB) Texture Size (in KB) Combined Size (in KB)

1,19

23,6

V R A M U S A G E I N M B

VRAM USAGE
CASE 1

Pixel Shaded Mesh

Vertex Shaded Mesh

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 18

2. Case: Mid Poly Vertex Shaded Mesh vs. Low Poly Pixel Shaded Mesh

The second test case shows nicely, that vertex shaded meshes, are not always resulting in smaller

asset sizes. As more color information will require more vertices, to store the additional color

information, there is quickly a point reached at which the combined size of the pixel shaded mesh

and its texture is resulting in a smaller asset size.

This can be explained by the following:

 Each Pixel of a texture needs 24/32bpp (8Bit for each channel), resulting in 3Bytes per pixel

 But each Vertex needs a position, a normal and the color, resulting in 38Bytes per vertex

Therefore, additional vertices which have to be added to a vertex shaded mesh, are only reducing

the overall asset size, if their additional data is not exceeding the data required for an additional

texture.

As the actual file size of a mesh is dependent of many factors, it’s not practical to define a general

mathematical formula, at which a per vertex shaded mesh will be bigger than a pixel shaded mesh

with its texture. However, looking at the first two test cases, a rough estimate could be that meshes

with less than the double amount of additional vertices, added for vertex color information, can

result into smaller asset sizes. A more detailed estimate would require a lot of additional base

information, like the used file type (and therefore the possible compression used), the amount of

vertices, their normal & UVs (if existing), the assigned colors, as well as the amount of triangles.

Similar dependencies apply to the texture. To gather all these data of an asset, before it exists is not

possible, and after the assets are already created the formula would be unnecessary.

But even with the increased asset size, the vertex shaded mesh still remains lower on VRAM usage. In

this case at 1.19MB for the Vertex Shaded Mesh and 23.6MB for the pixel shaded mesh. This makes

the vertex shaded mesh still to a valid alternative for applications with the requirement of low VRAM

usage.

40
1,

78

73
,2

3

0

20
9,

82

40
1,

78

28
3,

04

V E R T E X S H A D E D M E S H P I X E L S H A D E D M E S H

FILE SIZES - CASE 2

Model Size (in KB) Texture Size (in KB) Combined Size (in KB)

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 19

3. Case: Optimized Vertex Mesh vs. Low Poly Pixel Shaded Mesh

The third test case shows, that vertex shaded meshes can be further optimized to increase the region

where they are resulting in smaller asset sizes. Meshes can have additional vertices to add a greater

amount of color details, while keeping the asset size small. As long as the required additional vertices

are not requiring more data as a texture would do.

The manually created mesh of this test case only contains the required polygon count to visualize the

given color information, without any unneeded extra geometry. Therefore, it is still a valid alternative

to reduce the asset size. However, what is important on this method is to carefully think about the

amount of extra vertices, that will be required for the additional color information, to ensure its not

ending up in a higher data consummation than intended. In addition to that, this method is requiring

more manual work as the default creation of vertex shaded meshes, as the model has to be adjusted.

Usability
The asset creation for the prototype showed, that vertex shaded meshes can be created quicker,

than pixel shaded meshes, as the additional step of unwrapping the model falls away.

Furthermore, most modeling applications support vertex color painting out of the box, so that no

additional software is required, for the creation of vertex shaded meshes. Moreover, the separate

step of transferring an asset into a texturing application falls away.

Another interesting technique is the conversion of textures into geometry, a technique that was

amongst other things used in Homeworld (Trümpler, Homeworld 2 - Backgrounds | Simon Schreibt,

2013).

24
3,

65

73
,2

3

0

19
5,

99

24
3,

65 26
9,

22

V E R T E X S H A D E D M E S H P I X E L S H A D E D M E S H

FILE SIZES - CASE 3

Model Size (in KB) Texture Size (in KB) Combined Size (in KB)

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 20

Conclusion and discussion
The optimization of assets regarding their files sizes and VRAM is even more important for web

based applications, which should run smoothly across a wide variety of target devices and locations.

As textures usually take up a lot of memory and thus can drastically increase the download size and

VRAM usage of web based applications, the use a vertex color offers a tempting alternative to the

standard method of per pixel shading.

Web based applications like for example Googles Lightsaber Demo are requiring way more data than

normal websites do, consequently their download times can be quite long. Depending on the

location and device of the user this can greatly influence the user experience. While five MB in

additional asset size are probably unnoticed in countries above the average download speed, they

can increase the loading time of a user connected with an average 3G mobile connection by more

than 3seconds. As the average internet user expects websites to load in under 3 seconds, the

reduction of asset sizes gets more important, the lower the average download speed of the target

area gets.

A prototype created with the Playcanvas WebGL engine and its JSON based model format showed

the influence, that the different mesh data has on the actual file size. While a vertex shaded mesh is

only requiring around 38Bytes of data per vertex, a per pixel shaded mesh is claiming two additional

bytes per vertices in this engine (See Appendix “Calculation of Playcanvas Model Sizes”). Similar

results are observed with native FBX files. This makes vertex color always the more lightweight

shading technique, regarding the required file sizes, as long as the mesh does not require additional

vertices, which only store color information.

However, if more vertices are required to color a mesh with the desired detail resolution, than its

pixel shaded alternative would take up, it's depended of the amount of additional vertices. This is

caused by the fact that each pixel of a texture takes up way less bytes, than a single vertex does. Its

therefore only cheaper to add additional vertices for supplementary color information to a mesh, if

their additional data is not exceeding the data required for an additional texture.

When exactly this point is reached is however dependent of too many factors to define a general

mathematical formula, which still remains practical to use. Thought a comparison of different models

in the given prototype indicates, that a rough estimate could be: That meshes with less than the

double amount of additional vertices, added for vertex color information, can still result into smaller

asset sizes, than a pixel shaded mesh.

Certainly this remains only a very rough estimate, which can be used as recommendation for further

research, on a case to case basis, as a more detailed estimate would require way more data like the

used file types of the model and texture, their compressions, as well as the amount of vertices,

normals, UVs, triangles and used colors.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 21

Another advantage of per vertex shaded meshes is their compared to per pixel shaded meshes very

low VRAM usage. The prototype showed, that the VRAM usage of vertex shaded meshes is taking up

only a fraction of their pixel shaded opponents, even if their asset sizes are bigger. This makes vertex

shaded meshes particular interesting for applications with the requirement of low VRAM usage.

As this paper only investigated the general possibility of using vertex colored meshes as alternative in

some cases, based on a prototype build in the Playcanvas game engine. Further research could

examine the influence of different shaders, file types and compression methods, as well as their

implementation in different engines, to see how this can affect the asset sizes and VRAM usage of

both shading techniques.

Vertex shading offers a tempting alternative to reduce asset sizes and VRAM consummation, to some

extend and therefore allows to optimize web based applications to download faster and run

smoother on a greater amount of target devices, which can positively influence the user experience.

In addition to the question, when vertex colored meshes have advantages in their asset sizes and

VRAM consummation the question of their usability remains a personal decision. While the creation

of meshes with vertex color is generally quicker, due the lacking requirement of unwrapping the

mesh as well as the reduced number of production steps, it is quite different method of texturing,

which might not fit to everybody and every project.

Recommendations
The use of per vertex colored meshes is valid solution to reduce the asset size and VRAM

consummation of WebGL applications, as long as some limitations are taken into account.

 If the art style allows to color meshes via vertex color, without the addition of too many

additional vertices, use vertex color. As this will reduce the asset sizes and VRAM

consummation of the application. However, if this is not the case, a per pixel shaded mesh is

cheaper regarding the asset sizes.

 If vertex shaded meshes are requiring too many additional vertices, evaluate the advantage

of the lower VRAM consummation for the target group. If that’s a limiting factor for the

application, consider the use of vertex color, even if that increases the asset sizes.

 If low VRAM usage and tiny asset sizes are key requirement for the target group, consider

using a low poly art style, as used in the prototype, because this offers an ideal use case for

vertex color.

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 22

Graduation Products
The prototype created for this paper can be found under the following link:

http://playcanv.as/p/IFYx958a

References
Akamai Technologies. (2016, 03 22). Content Delivery Network (CDN) and Cloud Computing Services

Provider | Akamai. Retrieved from Akamai: https://content.akamai.com/PG5641-Q4-2015-

SOTI-Connectivity-Report.html

Akamai Technologies. (2016, 04 12). Content Delivery Network (CDN) and Cloud Computing Services

Provider | Akamai. Retrieved from Akamai: https://www.akamai.com/us/en/our-

thinking/state-of-the-internet-report/index.jsp

Alkemi. (2013, August 15). A game of Tricks II – Vertex Color | Alkemi. Retrieved from Alkemi Games:

http://www.alkemi-games.com/a-game-of-tricks-ii-vertex-color/

Anderson, S. (2016, April 12). hobo - internet marketing. Retrieved from http://www.hobo-

web.co.uk/your-website-design-should-load-in-4-seconds/

Deveria, A. (2016, 04 11). Can I use... Support Tables for HTML5, CSS3 etc. Retrieved from Can I use:

http://caniuse.com/#feat=webgl

Google. (2015, April 8). Mobile Analysis in PageSpeed Insights | PageSpeed Insights | Google

Developers. Retrieved from Google Developers:

https://developers.google.com/speed/docs/insights/mobile?hl=en

Google. (2016, April 12). Lightsaber Escape. Retrieved from Lightsaber Demo:

https://lightsaber.withgoogle.com/

Khronos Group. (2011, April 10). Getting Started - WebGL Public Wiki. Retrieved from Khronos.org:

https://www.khronos.org/webgl/wiki/Getting_Started

Khronos Group. (2014, October 27). WebGL Supported GLSL Constructs. Retrieved from

https://www.khronos.org/registry/webgl/specs/1.0/#4.3

Lahav, M. C. (2016, April 4). A faster FT.com - Engine Room. Retrieved from Engine Room:

http://engineroom.ft.com/2016/04/04/a-faster-ft-com/

Maemo. (2016, 04 13). Data Plans - maemo.org Wiki. Retrieved from Maemo Wiki:

https://wiki.maemo.org/Data_plans#Netherlands

http://playcanv.as/p/IFYx958a

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 23

OpenSignal. (2016, 04 12). About Us - OpenSignal. Retrieved from OpenSignal:

http://opensignal.com/about/

OpenSignal. (2016, 03 1). The State of LTE - OpenSignal. Retrieved from OpenSignal:

http://opensignal.com/reports/2015/02/state-of-lte-q1-2015/

Playcanvas. (2016, 04 14). File Format - Learn Playcanvas. Retrieved from Playcanvas Manual:

http://developer.playcanvas.com/en/user-manual/graphics/file-format/

Polycount. (2014, September 26). Category:TextureTechnique - polycount. Retrieved from Polycount

Wiki: http://wiki.polycount.com/wiki/Category:TextureTechnique

Polycount. (2015, November 03). Ambient occlusion vertex color - polycount. Retrieved from

Polycount Wiki: http://wiki.polycount.com/wiki/Ambient_occlusion_vertex_color

Polycount. (2015, 8 12). Foliage Vertex Color - polycount. Retrieved 3 13, 2016, from Polycount Wiki:

http://wiki.polycount.com/wiki/Foliage_Vertex_Color

Polycount. (2016, April 15). MultiTexture - polycount. Retrieved from Polycount Wiki:

http://wiki.polycount.com/wiki/MultiTexture

Polycount. (2016, January 28). Texture Coordinates - polycount. Retrieved from Polycount Wiki:

http://wiki.polycount.com/wiki/Texture_Coordinates

Souders, S. (2016, 04 11). About the HTTP Archive. Retrieved from HTTP Archive:

http://httparchive.org/about.php#mission

Sousa, T. (2007, December 1). GPU Gems 3 - Chapter 16. Vegetation Procedural Animation and

Shading in Crysis. Retrieved from Nvidia Developer Zone:

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch16.html

Trümpler, S. (2013, March 45). Homeworld 2 - Backgrounds | Simon Schreibt. Retrieved 04 2016, 10,

from Simon Schreibt: https://simonschreibt.de/gat/homeworld-2-backgrounds/

Trümpler, S. (2015, 8 23). X:Rebirth – Geometric Lensflares | Simon Schreibt. Retrieved 3 13, 2016,

from Simon Schreibt: https://simonschreibt.de/gat/xrebirth-geometric-lensflares/

Unity Technologies. (2014, October 7). Benchmarking Unity performance in WebGL - Unity Blog.

Retrieved from Unity Blog: http://blogs.unity3d.com/2014/10/07/benchmarking-unity-

performance-in-webgl/

Unity Technologies. (2015, May 28). Web Publishing Following Chrome NPAPI Deprecation - Unity

Blog. Retrieved from Unity Blog: http://blogs.unity3d.com/2015/05/28/web-publishing-

following-chrome-npapi-deprecation/

Wikipedia. (2015, September 12). OpenGL Shading Language - Wikipedia, the free encyclopedia.

Retrieved from Wikipedia, the free encyclopedia:

https://en.wikipedia.org/wiki/OpenGL_Shading_Language#Versions

17.04.2016 [Vertex Vs Pixel Shading Comparison]

Saxion University of Applied Science | Martin Niehoff 24

Appendices

Calculation of Playcanvas Model Sizes
The calculation is based on the official documentation (Playcanvas, 2016).

Each Vertex Shaded Mesh is storing the following data per vertex:

 Position Vector: 15bytes

 Normal Vector: 15bytes

 Vertex Color: 8bytes

Resulting in 38 Bytes per vertex.

Comparing that with a pixel shaded mesh, which is storing:

 Position Vector: 15bytes

 Normal Vector: 15bytes

 Texture Coordinates: 10bytes

Resulting in 40 Bytes per vertex with an additional texture with 24/32bpp: 3 bytes per pixel.

	Reason
	Preliminary Problem statement

	Theoretical framework
	Definitions
	What means per vertex shading?
	What means per pixel shading?
	WebGL

	Technique Comparison
	Vertex Color
	Usage
	Limits

	Pixel Color
	Usage
	Limits

	Background Information
	What are the requirements of WebGL?
	Are there different requirements between the two shading methods in WebGL?
	What is the average size of a website in 2015?
	What is the average bandwidth of users?
	What is the difference between mobile and static internet bandwidth?
	What is the maximum average time, that a website should take to load?
	What costs is this traffic producing?

	Definition of the problem
	Main Question
	Sub Questions
	 When are per vertex shaded meshes resulting in smaller asset sizes?
	 When have per vertex shaded meshes a lower VRAM consummation?

	Scope
	Research and design
	List of test cases:
	1. Case: Low Poly Vertex Shaded Mesh vs. Low Poly Pixel Shaded Mesh
	2. Case: Mid Poly Vertex Shaded Mesh vs. Low Poly Pixel Shaded Mesh
	3. Case: Optimized Vertex Mesh vs. Low Poly Pixel Shaded Mesh

	Research results
	What is the importance of file sizes for web based applications?
	Are there differences between, different mesh file types?
	FBX (FBX 2013 in Binary Mode)

	Can different Vertex Colors influence the file size of the mesh?
	Prototype Results
	1. Case: Low Poly Vertex Shaded Mesh vs. Low Poly Pixel Shaded Mesh
	2. Case: Mid Poly Vertex Shaded Mesh vs. Low Poly Pixel Shaded Mesh
	3. Case: Optimized Vertex Mesh vs. Low Poly Pixel Shaded Mesh

	Usability

	Conclusion and discussion
	Recommendations
	Graduation Products
	References
	Appendices
	Calculation of Playcanvas Model Sizes

